
 Server

Directive 1: no state spill (above all else)

Directive 2: elementary modules

Flat Module Architecture
● Submodules contribute to complex entanglement

○ Extract submodules into first-order modules

● Simplifies module logic → nano_core manages all
● Permits communication and compositional hierarchy

Theseus: a State Spill-free Operating System
Kevin Boos and Lin Zhong

OSes are complex and entangled

● Existing OSes are a web of entangled entities
○ Cannot treat entities independently

● OS components should be easily interchangeable
at runtime, for fluid system evolution
○ Goal: Runtime Composability

● Prior decoupling strategies are insufficient;
entanglement remains between system entities
○ Modularization
○ Encapsulation (OOP)
○ Privilege-level separation (μkernel)
○ Hardware-driven (Barrelfish)

Theseus design principles

1. No traditional encapsulation
○ Client A should maintain the state representing

its progress with server B, instead of B
○ Preserve information hiding: A cannot inspect

or modify state from B

2. Stateless interactions
○ An interaction from A → B must include

everything B needs to handle it
○ Implication: B can be practically stateless

3. Universal, connectionless communication
○ All entities are accessible in a uniform way
○ Do not assume ongoing existence of interfaces

4. Re-use of generic, spill-free patterns
○ Implement common OS design patterns once in

a spill-free way, then re-use across system

Design & implementation decisions

State Spill is the root cause

● Scenario: source entity A (“client” role)
communicates with destination B (“server role).

● State spill occurs when B’s state undergoes a
lasting change after handling an interaction from A.

Main goals of Theseus

Caller entity A
(“client”)

Callee entity B
(“server”) Initial state

pre-interaction

Changed state
mid-interaction

Lasting changes
post-interaction

state
spill

Encapsulation causes state spill

Standard Encapsulation Opaque Exportation +
Stateless Communication

Client state Server state

config(c)

fn1()

fn2(r1)

c

c, s1

c, s1,
s2

r1

r1, r2

void

r1

r2

Client state Server state

r1

r1, r2

c

c, s1

c, s1, s2

c

c, s1

config(c)

 fn1()

fn2(r1)

void

r1

r2

c, s1

c

c

c, s1

c, s1, s2

c, s1, s2

task mgmt

kernel
console

input event mux

keyboar
d

indirectio
n layer

sc
he
du
ler

CFQ
policy

FCFS
policy

RR
policy

mouse
indirection layer

VGA indirection layer
graphics mux

filesystem

PIC IRQ

PIT clock IRQ

event dispatcher

syscall dispatcher

syscall
indirectio
n layer

heap allocator

frame allocator
stack allocator

PIC IRQ

filesystem

PIC IRQ

PIC IRQfilesystem

filesy
stem

 Monolithic / Microkernel OS Theseus

For disentanglement, we focus only on
states and how they propagate

throughout entities in the system.

schedule
r

Current status and future work

● Done: baseline OS from scratch, all in Rust
● Now: analyze & rethink modules and interfaces

to remove state spill
● Far: no user/kernel distinction: “bag of modules”

Software-only Isolation and Safety
● Modules are separate binaries: namespace isolation
● Augment Rust compiler to permit minimal subset of

unsafe code necessary for basic OS functionality
● Error handling is mandatory, using Option & Result

○ Panics are disallowed and transformed into errors

State Management
● At some point, some entities must hold some state

System-wide entity
(e.g., hardware resource)

Client Client Client

Multi-client state

● Export multi-client state
as data blob jointly
owned by all clients

● Clientless states are
owned by state_db
metamodule
○ Entity caches a

weak reference to it

nano_core

state
db

W

W

