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Directive 1:    no state spill  (above all else)

Directive 2:   elementary modules

Flat Module Architecture
● Submodules contribute to complex entanglement 

○ Extract submodules into first-order modules

● Simplifies module logic → nano_core manages all
● Permits communication and compositional hierarchy

Theseus:  a State Spill-free Operating System
Kevin Boos and Lin Zhong

OSes are complex and entangled

● Existing OSes are a web of entangled entities 
○ Cannot treat entities independently

● OS components should be easily interchangeable 
at runtime, for fluid system evolution
○ Goal:  Runtime Composability

● Prior decoupling strategies are insufficient; 
entanglement remains between system entities
○ Modularization
○ Encapsulation  (OOP)
○ Privilege-level separation  (μkernel)
○ Hardware-driven  (Barrelfish)

Theseus design principles

1. No traditional encapsulation
○ Client A should maintain the state representing 

its progress with server B, instead of B
○ Preserve information hiding:  A cannot inspect 

or modify state from B

2. Stateless interactions
○ An interaction from A → B must include 

everything B needs to handle it
○ Implication:  B can be practically stateless

3. Universal, connectionless communication
○ All entities are accessible in a uniform way
○ Do not assume ongoing existence of interfaces 

4. Re-use of generic, spill-free patterns
○ Implement common OS design patterns once in 

a spill-free way, then re-use across system

Design & implementation decisions

State Spill is the root cause

● Scenario: source entity A (“client” role) 
communicates with destination B (“server role).

● State spill occurs when B’s state undergoes a 
lasting change after handling an interaction from A.

Main goals of Theseus
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Encapsulation causes state spill

Standard Encapsulation Opaque Exportation + 
Stateless Communication
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 Monolithic / Microkernel OS  Theseus 

For disentanglement, we focus only on 
states and how they propagate 

throughout entities in the system.
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Current status and future work

● Done: baseline OS from scratch, all in Rust
● Now: analyze & rethink modules and interfaces 

to remove state spill
● Far: no user/kernel distinction:  “bag of modules” 

Software-only Isolation and Safety
● Modules are separate binaries: namespace isolation 
● Augment Rust compiler to permit minimal subset of 

unsafe code necessary for basic OS functionality
● Error handling is mandatory, using Option & Result

○ Panics are disallowed and transformed into errors

State Management 
● At some point, some entities must hold some state

System-wide entity 
(e.g., hardware resource)

Client Client Client

Multi-client state

● Export multi-client state 
as data blob jointly 
owned by all clients 

● Clientless states are 
owned by state_db 
metamodule
○ Entity caches a 

weak reference to it
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